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Abstract. The problem of armnging d-dimensional spheres in such a way that each sphere 
touches exactly d + 1 others is formulated by means of linear recursions involving d + I different 
(d + 2) x (d + 2) matrices. The avenge curv3tum are calculated exactly for any dimension. 
Special scaling limils for the powers of one mnhix or of the products of two mntrices show 
interesting behaviour: the corresponding curvatures either diverge quadn*ieally, or form a six- 
step cycle (only ford = 3 and one matrix), or show ergodic behaviour, sometimes with universal 
invariant measure. The latter type of behaviow is also found if the results are formally extended 
to non-integer values of d .  

1. Introduction 

Recently, the problem of the Apollonian tiling (after Apollonius of Perge, c .  200 BC) of 
a plane by mutually touching circles has received considerable attention. Mathematically, 
this is an example of a packing of spheres, which is defined as a set of non-intersecting 
spheres all contained completely within a bounded region of space. Such a packing is called 
complete if the total volume of these spheres (of which there must then be infinitely many) 
equals the volume of the container. A packing is called osculatory or Apollonian if the 
spheres are tangent to each other. It is known, that in two [I] and three [2] dimensions, 
osculatory packings are complete, whereas their analogues in more than three dimensions 
contain intersecting spheres. These Apollonian arrangements (with packings as special 
cases) form the subject of the present paper. 

Non-osculatory, complete packings are also of great interest; these have recently been 
studied extensively in two dimensions [3,4], and also in dimensions larger than three to 
provide alternatives to the Apollonian arrangements, which are not packings [5]. Osculatory 
packings in two dimensions with extra symmetry properties are space-filling bearings [6,71. 
All of these constructions possess a group-theoretical backgrounds [S, 91 (see also [4]). 

The (multi) fractal nature of the set remaining after removal of all open spheres was 
recognized by Mandelbrot [IO] for the two-dimensional case (Apollonian gasket). In general, 
some care is necessary to identify the packing constant of a packing with a fractal dimension 
[ 111 (see also 1121). Several results for the fractal dimension of the Apollonian gasket have 
been obtained [13-171. (For the other packings listed above, see the references given.) It 
has been suggested, that Apollonian packings may provide models for foams, turbulence, 
liquid crystal textures and tectonic fault line movements. 

The present article is a step towards a generalization of Apollonian packing to 
dimensions higher than two. In d dimensions, d + 2 spheres can simultaneously touch 
each other. The relation between the curvatures of these spheres were first given by Soddy 
[IS] for d = 2 and d = 3, and by Cosset [19] for the general case. A simple modern 
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derivation can be found in [9]; see also section 2. F o r d  > 2, the situation is quite different 
from the d = 2 case, since the d + 2 touching spheres have interstices, which are multiply 
connected to the space far from the spheres. Therefore, a recursive sequence of spheres will, 
in  general. contain some with positive curvature (‘inside‘) and some with negative curvature, 
which envelop the original ones. Also. spheres from sufficiently different recursive depths 
can be identical (this happens only fo rd  = 3) or they can intersect each other (ford 3) [2]. 

This article is organized as follows: in section 2, the recursion relations in d dimensions 
are formulated in terms of d + I matrices, which are the analogues of the Boyd matrices 
[15]. From these, the average curvature after n iterations is found to increase exponentially 
for all d. In section 3, the scaling limit for recursion using only powers of one of the 
matrices is studied. The results are: (i) for d = 2, the curvatures diverge quadratically, 
as already shown in [SI; for d = 3, the curvatures form a six-step cycle, which defines a 
peculiar arrangement of 18 spheres; (iii) for d > 3, the curvatures fill up the whole interval 
of allowed values with distribution function 

(1.1) 2 I / Z  -I 
P ( X )  = [ r ( I  - - x  1 1 

if the allowed interval is mapped linearly on to [-I ,  11. In section 4 the scaling limit 
for powers of a product of two matrices is studied. Here the results are: (i) exponential 
divergence of the curvatures for d = 2 191; (ii) quadratic divergence for d = 3; and (iii) 
very complex behaviour for d > 3: depending on the initial arrangement of spheres, the 
whole allowed interval or only part of it is filled up; in some cases, the distribution function 
seems to be the sum of two contributions of the type equation (1.1). In the final section, 
the results are briefly discussed. 

2. Matrix formulation and  the average curvature 

Let the curvatures of d + 1 mutually touching spheres in d dimensions be given by 
a ] ,  (12, . . . ad+l, Then the (d + 2)th sphere touching all d + 1 others has a curvature s 
given by [9, 18.191 

If sj is the curvature of the sphere touching the ‘central’ one with cuwature s and all of the 
others with the exception of the one with curvature U,, then uj and s; necessarily are the 
two solutions of the same quadratic equation: 

so that one has 

(2.3) 

Therefore, if the two sets of d + 2 mutually touching spheres are represented by (d  + 2)- 
dimensional vectors as 

v r = ( a t , a z  ,..., ad+t,s)  and vj =(a1 ,..., uj-l ,s  ,.... ad+t,sj) (2.4) T 
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respectively, then the matrix M, which maps II on U, can be written as 

(2.5) 
where T ( j , d  + 2 )  is the matrix representative of the transposition ( j , d  + 2 )  and B is a 
fixed matrix with structure: 

A 4 j  = B T ( j , d  + 2) j = 1 , .  . . , d + 1 

\ g  g ' ' g -11 
All elements of B not on the diagonal or in the last row are zero. We define the Apollonian 
arrangement of spheres with seed uo as the result of the application of all possible products 
of M-matrices on UO. This Apollonian arrangement of spheres contains at most (d + 1)" 
different ones in the nth generation (due to n-fold matrix products). 

The average curvature ?in in the limit of large 11 can be calculated by considering the 
(d + 2)th element of the vector w. obtained by applying the sum of all Mj-matrices to VO: 

(2.7~) 

Z,, = (d + I)-"w.(d + 2 ) .  (2.7b) 
The matrix N has the form: 

with all elements not on the diagonal or in the last row or column equal to zero. The matrix 
N has d eigenvalues equal to d corresponding to the eigenspace of vectors of the form 

d+l 

(bl, bz, . . . , bd+l, O ) T  with x b i  = 0 
i = l  

and two eigenvalues given as (+ sign for el) 

with eigenvectors of the form 

Therefore, ?in grows exponentially for large n as 

el,% = (d' + d + 2 f [d(d3 - 2d' + 9d + S)]"'} / [2 (d  - 1)1 

(1, 1,. . _ ,  1 ,b )T .  

(2.10) 

(2.1 1) 

(2.12) - 
a, 2 I*[el / (d+ 1)l" 

with depending on UO. It is to be noted, that equation (2.12) represents the average of all 
curvatures with sign, so that the occurrence of negative curvatures for d z 2 implies that 
the average absolure curvature grows faster than equation (2.12) in this case. 

For d = 2, el = 4 + a; this implies a lower bound on the Hausdorff dimension d f  
of the Apollonian gasket: 

d f >  l n ( 3 ) / [ l n ( 4 + ~ ) - l n ( 3 ) ]  5 1.181. (2.13) 
This is not very good as an estimate for df (the best estimate is df  = 1.305686729(10) 
1171). but constitutes a very simple proof that df z 1 holds. 
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3. Scaling limit for powers of one matrix 

In this section, we study the curvatures of spheres obtained from an initial vector of the 
form 

vo = (1 ,1 ,  ..., 1,s) s = [ d +  1 + [ 2 d ( d +  I ) ] I ’* } / (d  - 1) (3.1) 

by applying the powers of one Mj-matrix to it. We choose j = d + 1 here. Then if b, is 
the (d  + 2)th element of (Md+l)nVO, one has the recursion relation 

b, = 2(b.-1 + d ) / ( d  - 1) - bn-2 bo = 1, bi = S. (3.2) 

In the case d = 2, equation (3.2) is easily solved to give [9]  

b, = 1 + (S - l ) n  + 2n(n - 1). (3.3) 

For d = 3, equation (3.2) gives rise to a six-step cycle: 

bbn = 1 

bbn+3 = 5 

bbn+i = 2 + bb.i.2 = 4 + & 
bbn+4 = 4 - & b6,,+5 = 2 - &. 

This (together with the results for other values of j )  describes a beautiful arrangement of 
18 spheres: four touching spheres with curvature 1 form a tetrahedron; the inscribed sphere 
has curvature 2+& and the sphere enclosing them has curvature &-2 (which is counted 
as negative, since it encloses all others). In each of the four interstices between three of the 
radius-1 spheres, there f i t  exactly three spheres with curvatures (from inwards out) 4 +&, 
5 and 4 - &. 

For all cases with d > 3,  numerical solution of (3.2) shows that every value in the 
interval 

[bmin, bmml, b,,,,,,i. = Id i W ( d  - l))i’21/(d - 2) (3.4) 

occurs as a possible curvature value. Equation (3.4) gives the interval for the possible 
curvatures b in vectors of the form 

(1,1, .... l ,a,b)‘. (3.5) 

If the interval of (3.4) is mapped linearly on to [-I, I], then the distribution function 
describing the density in this interval is numerically found to be given by (1.1) (shown as 
figure I(a)) unir’ersnlly for all d 3. (Checked up to d = 20 and for selected larger values 
of d . )  This ergodic behaviour with invariant measure (1.1) is also found for all non-integral 
values of d that have been tested (equation (3.2) is well defined for all real d ) .  In all 
cases, the results do not change if the initial vector vo is replaced by another of the form 
of equation (3.5). The distribution of equation (1.1) is well known to occur frequently for 
quadratic maps of the interval on itself [ZO] as well as in  other contexts. It is not clear why 
it should show up in  the present problem. 
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Figure 1. (a) The universal density function of equation (1.1) for one-motrix iterations for 
d > 3. (b) The density fundion for two-matrix iterations for d > 3 and initial vector vg of 
equalion (3.1). The values of dm>" and &,,, hem are for the cased = 4. but the general picture 
is always similar. 

4. Scaling limit for powers of a product of two matrices 

In this section, the sequence of vectors 

U 2 n  = (&Md+l)"WO U2n-i = Md+i (MiMd+~)~-~vo  (4.1) 

( 1 , 1 , _ . . ,  l , a , b , ~ ) ~  (4.2) 

[cmin, cmnl, ~ m a , m i n  = ( d  - 1 f [2(d - I )@ - 2)I'') l (d  - 3 )  

with vo still given by (3.1) is studied. By consideration of the possible curvatures occurring 
in vectors of the form 

one finds as a possible interval for the (d + 2)th elements of U,: 

(4.3) 

which is the same as (3.4), but with d replaced by d - 1. 

three elements a,, bn and c. of un: 
Equations (4.1) are equivalent to the following set of recursion relations for the last 

= a k  

(4.4) 
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For the case d = 2, Soderberg [9] already proved the exponential divergence of the 
curvatures. For d = 3, there is a closed subsystem of equations (4.4), due to the presence 
of a factor d - 3 in the last equation: 

bzn+z = C& czn+2 = 2cb - b b  + 4 bo = 1 CO = s = 2 + -4%. (4.5) 

This leads to the quadratically divergent solution 

czn-2 = 2 2  + (& - I)n + 1. (4.6) 

This quadratic behaviour is then inherited by all coefficients. All curvatures are positive. 
Ford > 3, the starting value WO again leads to all values allowed by equation (4.3). Half 

of these values come from odd-numbered iterations and these seem to have a distribution of 
the form (1.1) again, but in an interval [cmln,dmm] with d,, smaller than cma. Similarly, 
the even-numbered iterations fill up an interval [d,;., cma] with d,, > c,,,in. Numerically, 

d,, + d,, = cmin + c,, = 2(d - l ) / ( d  - 3) (4.7) 

holds, so that the distribution function in [c,,, emu] is symmetric with four square root 
singularities (see figure l(b) for the case d = 4). In table I, the values for the boundaries 
of the sub-intervals are collected for 3 c d c 13. The d,,,=,dn values are numerical results, 
of course. 

Tnblc 1. Intervals filled up by lwumamx powen with initial vo. 

Dimension emin &," d m  Cm.. 

4 -0,464 IO 0.68868 5.311 31 6.464 IO 
5 -0.44949 0.65807 3.341 93 4.44949 
6 -0.441 52 0.637 16 2.696 17 3.774 85 
7 -0.43649 0.62'203 2.37797 3.43649 
8 -0.43303 0.61056 2.18943 3.23303 
9 -0.43050 0.601 60 2.06506 3.097 17 

10 -0.42857 0.59440 1,97703 3 
I 1  -0,42705 0.58848 1.91 I52 2.92705 
12 -0.42582 0.58354 1.86090 2.87027 

The above picture for d > 3 becomes even more complicated, if instead of UO, other 
initial vectors of the form of equation (4.2) are chosen. It transpires that the distribution 
always has four square root singularities placed symmetrically in [c,,,jn, c,~] .  but the covered 
part of the interval may be smaller or may even be concentrated on two non-overlapping 
intervals [d, ,  4 1  and 1 4 ,  d4], which are embedded symmetrically in the allowed interval: 

dl + d4 = dz + d3 di - cmin 5 cmax - d4. (4.8) 

Similar results are obtained if the recursions of equation (4.4) are formally extended to 
non-integer values of d. 
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5. Summary 

The Apollonian recursion of spheres in d dimensions has  been cast into matrix form, 
allowing for exact calculation of the average curvature after n generations for n large. 
The scaling limits for powers of one matrix and for powers of a product of two matrices 
have yielded exact results in d = 2 and d = 3 and numerical ones for d > 3 and for 
non-integer values of d. These are briefly listed here: 

d = 2: Quadratic divergence for one matrix, exponential divergence for a matrix product. 
d = 3: A fixed structure consisting of 18 spheres for one matrix, quadratic divergence for 

a matrix product. 
d > 3 and d non-integer: Numerically, one matrix yields ergodic behaviour in the whole 

allowed interval independent of initial conditions. There is a universal invariant 
measure given by equation (1.1). A matrix product gives a distribution, which 
appears to be the sum of two terms of the type  (1.1); the parts of the interval filled 
up depend on the initial conditions. 

For the case d > 3, it remains to investigate these initial state dependencies in more detail. 
This is difficult because of the problem of visualizing the inital configuration and its iterates. 
For d = 3. the 18-sphere structure is further filled up in the manner described in [Z]. 
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